Series VENTS VUT EH

LCD control panel

Air handling units with the air capacity up to **2200 m³/h** and recuperation efficiency up to 85% in sound-proof and heat-insulated casing with electric heater.

Description

Air handling units VUT EH with electric heater and VUT WH with water heater are the complete air handling units designed to provide both supply and exhaust ventilation with air filtering and heat recovery. The exhaust air energy is used to heat up the supply fresh air through the heat exchanger. All the models are designed for connection with \emptyset 125, 150, 160, 200, 250, 315 mm round ducts.

Modifications

VUT EH – a range of compact energy saving air handling units (AHU) equipped with supply and exhaust centrifugal fans, cross-flow heat recovery elements, electric heating coils and air filters.

VUT WH – a range of compact energy saving air handling units (AHU) equipped with supply and exhaust centrifugal fans, cross-flow heat recovery elements, water or glycol heating coils and air filters.

Casing

SAS908 control panel

The casing is manufactured from aluminum-zinc compound with 25 mm thick mineral wool heat- and sound-insulating layer.

Air handling units with the air

capacity up to 2100 m³/h and

recuperation efficiency up to 78%

in sound-proof and heat-insulated

casing with water heater.

Series

VENTS VUT WH

Filter

Two incorporated G4 panel filters for extract air ventilation and F7 filters for supply air ventilation are supplied with the unit.

Fans

The units are equipped with supply and exhaust centrifugal double-inlet fans with forward curved blades and built-in thermostat with automatic restart. The electric motors and impellers are dynamically balanced in two planes. The ball-bearings used with motors are designed for at least 40 000 hours operation and are maintenance-free.

Heat exchanger

The heat exchangers have high efficiency and are manufactured from aluminium plates. The unit is also equipped with the drain pan for condensate drainage.

Heater

If the external temperature is too low and/or the heat energy transfer from the extract air is insufficient to heat up the incoming air to the required temperature, the heater will automatically be turned on. The control system regulates the heating power to maintain the indoor temperature as set by the user. The units supplied with water heating coils are marked as VUT WH, and the units with electric heaters are marked as VUT EH. Water heating coils are available with two or four rows depending on required heating power.

Automation and control system

The unit is equipped with built-in automation system with multifunctional control panel with graphic LCD indicator. The standard delivery set includes 10 m wire for connection to the control panel. Electronic freezing protection is applied to prevent the heat exchanger freezing. It includes the by-pass damper and the heater. It operates due to opening of by-pass air shutter as the temperature sensor requires to let the air flow pass through the heat exchanger through the by-pass duct. During the heat exchanger defrost cycle the supplied air is warmed up in the heater up to the required temperature. During the defrost process the warm exhaust air warms the heat exchanger. After that the by-pass damper closes again, the heater is switched off, supply air warms up again through the heat exchanger and the unit continues operating under rated conditions.

VUT EH control and protection functions

- safe start-up and shutdown of the unit;
- setting and maintaining the desired temperature of the supply air with the control panel;
- motor speed control and regulation of the unit air capacity accordingly by means of the control panel;

 control of the external intake and exhaust air flow regulating damper actuators;

- working-out the required patterns while the unit start-up and shutdown;
- programming daily and weekly schedules by user;
- active electric heater overheating protection;
- disabling electric heater operation when the motor is not running;
- two electric heater over-heating thermostats;

• automatic switch ensuring the short circuit protection of the automation system;

• controlling filter clogging.

VUT WH control and protection functions

safe start-up and shutdown of the unit;

 supply air temperature controlling by means of actuating three-way valve regulating the feed of the heat medium into the water coils;

- water (glycol) heating coils freezing protection as the leaving air temperature and leaving heat medium temperature sensors require;
- controlling the heat exchanger by-pass actuator;
- control of the external circulation pump operation installed on the heat medium feed line entering into the water coils;
- heat exchanger freezing protection;
- control of the intake and exhaust fan operation;air clogging control according to engine hours;
- control of the external intake and exhaust air flow regulating damper actuators.

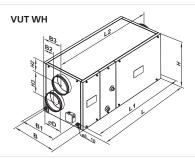
Air handling unit is equipped with the remote control panel that provides:

starting-up/shutdown of the ventilation unit;

- setting the required air flow;
- setting the required supply air temperature;
- displaying the temperature in the room.

Mounting


The air handling unit is mounted on the floor, suspended to the ceiling by means of a seat angle with inserted vibration-damping element or attached to a wall with brackets. The unit can be mounted either in service spaces or in main premises above the suspended ceiling, in the pocket or can be placed directly in the room. Mounting in any position shall provide the correct condensate drainage. Access for the unit maintenance and filter cleaning shall be provided through the side panels.


Unit overall dimensions:

Turne					Dimensions, [mm]										
Туре	ØD	В	B1	B2	В3	Н	H1	H2	H3	L	L1	L2			
VUT 350 EH	124	497	403	248	348	554	-	111	230	954	996	1054			
VUT 500 EH	149	497	403	248	348	554	-	111	230	954	996	1054			
VUT 530 EH	159	497	403	248	348	554	-	111	230	954	996	1054			
VUT 600 EH	199	497	403	248	348	554	-	111	230	954	996	1054			
VUT 800 EH	249	613	460	306	386	698	832	154	280	1071	1117	1171			
VUT 800 WH	249	613	460	306	386	698	832	154	280	1071	1117	1171			
VUT 1000 EH	249	613	460	306	386	698	832	154	280	1071	1117	1171			
VUT 1000 WH	249	613	460	306	386	698	832	154	280	1071	1117	1171			
VUT 1500 EH	314	842	581	320	520	814	947	201	595	1345	1388	1445			
VUT 1500 WH	314	842	581	320	520	814	947	201	595	1345	1388	1445			
VUT 2000 EH	314	842	581	320	520	814	947	201	595	1345	1388	1445			
VUT 2000 WH	314	842	581	320	520	814	947	201	595	1345	1388	1445			

Accessories for air handling units:

Туре	Replaceable filter (panel filter) G4	Replaceable filter (panel filter) F7				
VUT 350 EH VUT 500 EH VUT 530 EH VUT 600 EH	SF VUT 300-600 EH/WH G4	SF VUT 300-600 EH/WH F7				
VUT 800 EH VUT 1000 EH	SF VUT 1000 EH/WH G4	SF VUT 1000 EH/WH F7				
VUT 1500 EH VUT 2000 EH	SF VUT 2000 EH/WH G4	SF VUT 2000 EH/WH F7				
VUT 800 WH-2 VUT 800 WH-4 VUT 1000 WH-2 VUT 1000 WH-4	SF VUT 1000 EH/WH G4	SF VUT 1000 EH/WH F7				
VUT 1500 WH-2 VUT 1500 WH-4 VUT 2000 WH-2 VUT 2000 WH-4	SF VUT 2000 EH/WH G4	SF VUT 2000 EH/WH F7				

Pressure, ∆P [Pa]

Recuperation efficiency, [%]

Hz dB(A)

dB(A)

dB(A)

Sound-power level

L_{wA} to environment

 L_{wA} to inlet L_{wA} to outlet

25

100

75

70 65

Technical data:

	VUT 350 EH	VUT 500 EH	VUT 530 EH
Unit supply voltage [V / 50 Hz]	1~230	1~230	1~230
Maximum fan power [W]	2pcs. x 130	2pcs. x 150	2pcs. x 150
Fan current [A]	2pcs. x 0,60	2pcs. x 0,66	2pcs. x 0,66
Electric heater capacity [kW]	3	3	4
Electric heater current [A]	13	13	17,4
Number of water (glycol) coil rows	-	-	-
Total power of the unit [kW]	3,26	3,3	4,3
Total current of the unit [A]	14,2	14,32	18,72
Air capacity [m ³ /h]	350	500	530
RPM	1150	1100	1100
Noise level at 3m [dB[A]]	24-45	28-47	28-47
Operating temperature [°C]	-25 up to +55	-25 up to +50	-25 up to +50
Casing material	aluzink	aluzink	aluzink
Insulation	25 mm mineral wool	25 mm mineral wool	25 mm mineral wool
Filter: exhaust	G4	G4	G4
intake	F7 (EU7)	F7 (EU7)	F7 (EU7)
Duct connection diameter, [mm]	Ø125	Ø 150	Ø 160
Weight, [kg]	45	49	49
Recuperation efficiency	up to 78%	up to 88%	up to 88%
Heat exchanger type	cross-flow type	cross-flow type	cross-flow type
Heat exchanger material	aluminum	aluminum	aluminum

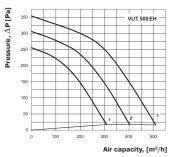
VENTS VUT EH

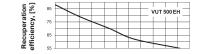
VUT 350 EH

Air capacity, [m3/h]

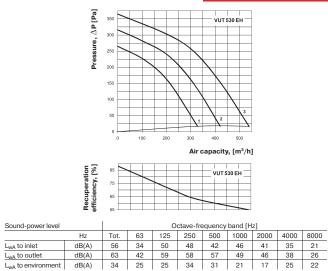
VUT 350 EH _

 Deterministret


 Tot.
 63
 125
 250
 500
 1000
 2000
 4000
 8000

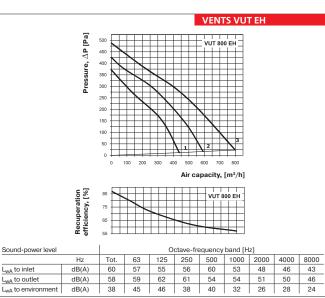

 50
 30
 50
 47
 438
 31
 19

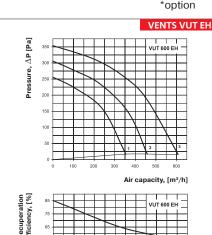
 58
 38
 53
 56
 53
 47
 455
 37
 25


 33
 23
 22
 32
 26
 19
 17
 22
 18

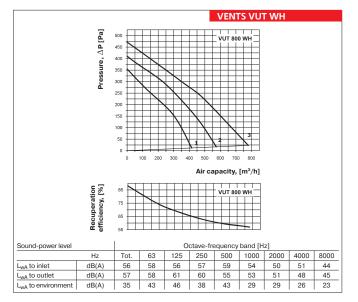
VENTS VUT EH

Sound-power level				0	ctave-fre	equency	band [H	z]		
	Hz	Tot.	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dB(A)	54	34	52	49	40	46	42	33	22
L _{wA} to outlet	dB(A)	64	41	57	57	56	51	50	40	26
L_{wA} to environment	dB(A)	36	25	26	36	30	22	21	24	21




VENTS VUT EH

VENTS. Industrial and commercial ventilation | 11-2010


Technical data:

	VUT 600 EH	VUT 800 EH	VUT 800 WH-2 VUT 800 WH-4		
Unit supply voltage [V / 50 Hz]	1~230	3~ 400	1~ 230		
Maximum fan power [W]	2pcs. x 195	2pcs. x 195 2pcs. x 245			
Fan current [A]	2pcs. x 0,86	2pcs.	x 1,08		
Electric heater capacity [kW]	4	9,0	-		
Electric heater current [A]	17,4	13,0	-		
Number of water (glycol) coil rows	-	-	2 or 4		
Total power of the unit [kW]	4,39	9,49	0,49		
Total current of the unit [A]	19,1	15,16	2,16		
Air capacity [m³/h]	600	800	780		
RPM	1350	16	50		
Noise level at 3m [dB[A]]	32-48	4	8		
Operating temperature [°C]	-25 up to +55	-25 up	to +45		
Casing material	aluzink	aluz	zink		
Insulation	25 mm mineral wool	50 mm mi	neral wool		
Filter: exhaust	G4	G	4		
intake	F7 (EU7)	G4 (F7)*		
Duct connection diameter, [mm]	Ø200	Ø 2	50		
Weight, [kg]	54	85	88		
Recuperation efficiency	up to 85%	up to	78%		
Heat exchanger type	cross-flow type	cross-fl	ow type		
Heat exchanger material	aluminum	alum	inum		
*option					

	ef B	55								
Sound-power level				0	ctave-fre	equency	band [H	z]		
	Hz	Tot.	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dB(A)	55	36	52	52	43	46	42	37	27
L _{wA} to outlet	dB(A)	67	45	60	62	59	52	53	43	32
L _{wA} to environment	dB(A)	39	28	29	38	34	25	20	25	26

VENTS. Industrial and commercial ventilation | 11-2010

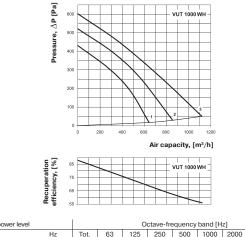
Pressure, ΔP [Pa]

Sound-power leve

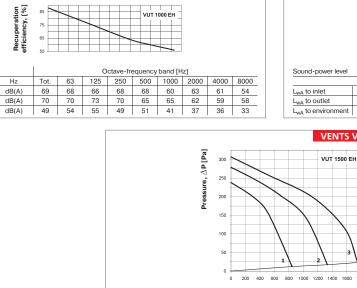
L_{wA} to outlet L_{wA} to environment

L_{wA} to inlet

500


200

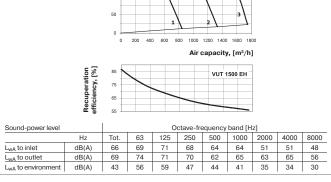
200 400 600 800 1000 1200


Technical data:

	VUT 1000 EH	VUT 1000 WH-2 VUT 1000 WH-4	VUT 1500 EH	
Unit supply voltage [V / 50 Hz]	3~400	1~230	3~ 400	
Maximum fan power [W]	2pcs.	x 410	2pcs. x 490	
Fan current [A]	2pcs.	x 1,8	2pcs. x 2,15	
Electric heater capacity [kW]	9,0	-	18,0	
Electric heater current [A]	13,0	-	26,0	
Number of water (glycol) coil rows	-	2 or 4	-	
Total power of the unit [kW]	9,80	0,82	18,98	
Total current of the unit [A]	16,6	3,6	30,3	
Air capacity [m³/h]	1200	1100	1750	
RPM	18	50	1100	
Noise level at 3m [dB[A]]	6	49		
Operating temperature [°C]	-25 up	to +40	-25 up to +45	
Casing material	aluz	zink	aluzink	
Insulation	50 mm mi	neral wool	50 mm mineral wool	
Filter: exhaust	G	i4	G4	
intake	G4 (F7)*	G4 (F7)*	
Duct connection diameter, [mm]	Ø2	250	Ø315	
Weight, [kg]	85	88	96	
Recuperation efficiency	up to	78%	up to 77%	
Heat exchanger type	cross-fl	ow type	cross-flow type	
Heat exchanger material	alum	aluminum		
*option				

VENTS VUT WH

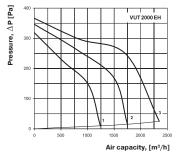
Sound-power level			0	ctave-fre	equency	band [H	z]			
	Hz	Tot.	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dB(A)	68	68	70	69	66	61	62	61	56
L _{wA} to outlet	dB(A)	70	68	69	69	68	64	61	59	58
L _{wA} to environment	dB(A)	47	55	56	48	55	38	40	36	34

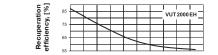

VENTS VUT EH

VUT 1000 EH

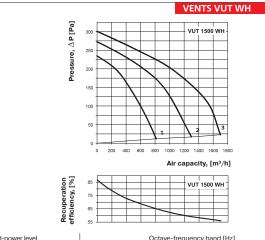
Air capacity, [m3/h]

VUT 1000 EH

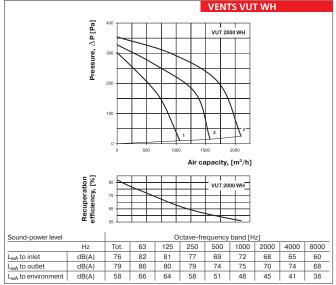




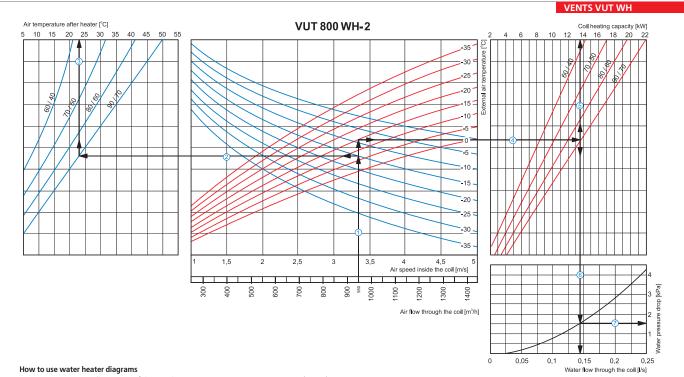
Technical data:


	VUT 1500 WH-2 VUT 1500 WH-4	VUT 2000 EH	VUT 2000 WH-2 VUT 2000 WH-4
Unit supply voltage [V / 50 Hz]	1~ 230	3~400	1~230
Maximum fan power [W]	2pcs. x 490	2pcs.	x 650
Fan current [A]	2pcs. x 2,15	2pcs.	x 2,84
Electric heater capacity [kW]	-	18,0	-
Electric heater current [A]	-	26,0	-
Number of water (glycol) coil rows	2 or 4	-	2 or 4
Total power of the unit [kW]	0,98	19,30	1,30
Total current of the unit [A]	4,3	31,7	5,68
Air capacity [m³/h]	1700	2200	2100
RPM	1100	11	50
Noise level at 3m [dB[A]]	49	6	5
Operating temperature [°C]	-25 up to +45	-25 up	to +40
Casing material	aluzink	alu	zink
Insulation	50 mm mineral wool	50 mm mi	neral wool
Filter: exhaust	G4	G	4
intake	G4 (F7)*	G4 (F7)*
Duct connection diameter, [mm]	Ø315	ØЗ	15
Weight, [kg]	99	96	99
Recuperation efficiency	up to 77%	up to	77%
Heat exchanger type	cross-flow type	cross-fl	ow type
Heat exchanger material	aluminum	alum	inum
*option			

VENTS VUT EH



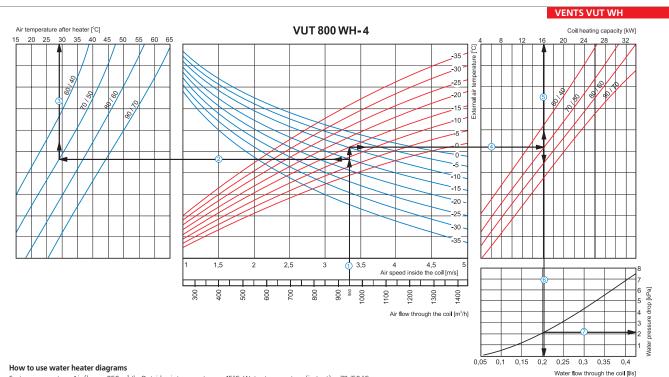
Sound-power level				0	ctave-fre	equency	band [H	z]		
	Tot.	63	125	250	500	1000	2000	4000	8000	
L _{wA} to inlet	dB(A)	75	80	82	80	72	71	66	66	59
L _{wA} to outlet	dB(A)	81	85	82	79	73	76	74	74	68
L _{wA} to environment	dB(A)	54	65	68	58	55	50	46	42	39


oound power level				0	curve m	squeriey	bana [n	4 J		
	Hz	Tot.	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dB(A)	64	72	67	65	62	65	56	55	48
L _{wA} to outlet	dB(A)	66	76	72	70	61	64	60	63	55
L _{wA} to environment	dB(A)	46	54	54	48	39	39	34	31	27

VENTS VUT WH

VENTS. Industrial and commercial ventilation | 11-2010

Hot water coil parameters:



System Parameters: Air flow = 950 m³/h. Outside air temper. =-15°C. Water temperature (in/out) = 90/70 °C • Air Speed. Starting from 950 m³/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.

Supply air temperature, prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line 🖉 from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+23°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature (e.g. - 15°C, red curve) and draw a horizontal line ④ from this point to the right until it crosses water in/out temperature (e.g., 90/70 °C), from here draw a vertical line ⑤ up to the scale representing the heating coil capacity (13.5 kW).
Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.14 l/s).

Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (1.5 kPa).

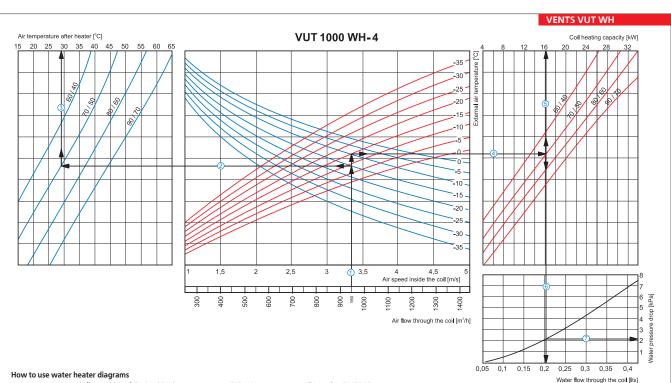
System parameters: Air flow = 950 m³/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C.

Air Speed. Starting from 950 m³/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.

Supply air temperature, prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line 🕲 from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+29°C).

Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line 🕘 from this point to the right until it crosses water in/out temperature curve (e.g., 70/50 °C), from here draw a vertical line ⁽⁵⁾ up to the scale representing the heating coil capacity (16.0 kW).
Water flow. Prolong the line ⁽⁵⁾ down to water flow axis at the bottom of the graphic ⁽⁶⁾ (0.21/s).
Water pressure drop. Draw the line ⁽⁷⁾ from the point where the line ⁽⁶⁾ crosses the black curve to the pressure drop axis. (2.1 kPa).

Hot water coil parameters:

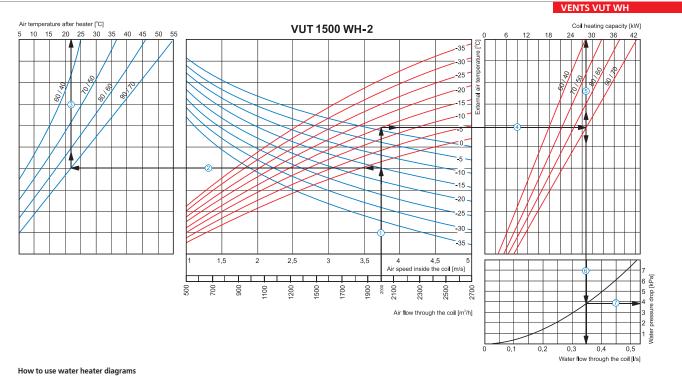


System Parameters: Air flow = 950 m³/h. Outside air temper. =-15°C. Water temperature (in/out) = 90/70 °C

Air Speed. Starting from 950 m³/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.

Supply air temperature, prolong the line 🛈 up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line 🕲 from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+23°C).

Heating coil capacity. Prolong the line ① up to the point where it crosses the outside air temperature acting coil capacity (3.5 kW).
Water flow. Prolong the line ③ down to water flow axis at the bottom of the graphic ⑥ (0.141/s).
Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (1.5 kPa).

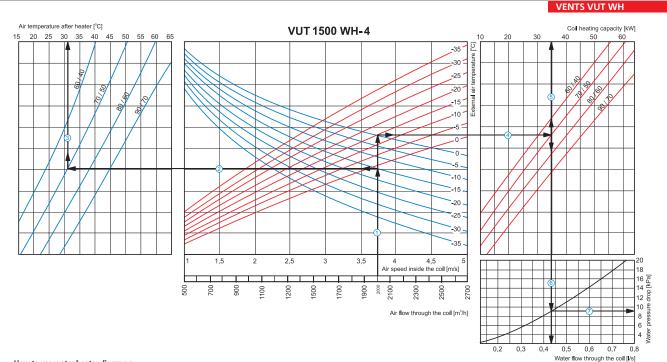

System parameters: Air flow = 950 m³/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C.

Air Speed. Starting from 950 m²/h on the air flow scale draw a vertical line ① till the air speed axis which makes about 3.35 m/s.
 Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line ② from this point to the left till crossing water

Supply all temperature, protong the line () up to the point where it crosses the outside an temperature (bue cuive, e.g., -15 c), then draw a horizontal line () to the infinite or the inclusion of the information of the informat

HEAT RECOVERY SERIES AIR HANDLING UNIT WITH

Hot water coil parameters:

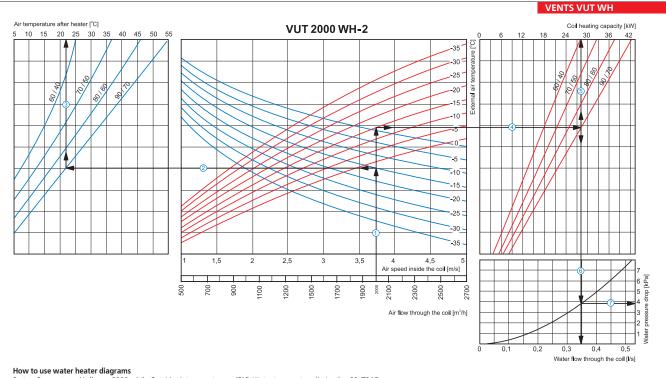


System Parameters: Air flow = 2000 m³/h. Outside air temperature =-15°C. Water temperature (in/out) = 90/70 °C.

• Air Speed. Starting from 2000 m³/h on the air flow scale draw a vertical line ① till the air speed axis. (3.75 m/s).

Supply air temperature, prolong the line ① up to the point where it crosses the outside air temperature (blue curve, e.g. -15*C); then draw a horizontal line② from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line 3 to the supply air temperature axis on top of the graphic (+22°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line 🕙 from this point to the right until it crosses water in/out temperature curve (e.g., 90/70 °C), from here draw a vertical line (5) up to the scale representing the heating coil capacity (28.0 kW).
Water flow. Prolong the line (5) down to water flow axis at the bottom of the graphic (6) (0.35 l/s).
Water pressure drop. Draw the line (7) from the point where the line (6) crosses the black curve to the pressure drop axis. (3.8 kPa).

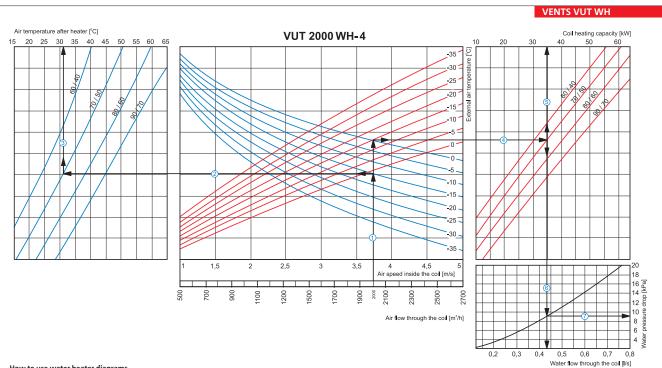

How to use water heater diagrams

System Parameters: Air flow = 2000 m³/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C.

Air Speed Starting Trong 2000 m/m. Ordine air emperature (m/out) = 70/30 c.
Air Speed Starting Trong 2000 m/m on the air flow scale draw a vertical line (0) till the air speed axis which makes about 3.75 m/s.
Supply air temperature, prolong the line (0) up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line (2) from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+31°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water in/out temperature curve (e.g., 70/50 °C), from here draw a vertical line ③ up to the scale representing the heating coil capacity (35.0 kW). ■ Water flow. Prolong the line ⑤ down to water flow axis at the bottom of the graphic ⑥ (0.43 l/s). ■ Water pressure drop. Draw the line ⑦ from the point where the line ⑥ crosses the black curve to the pressure drop axis. (9.0 kPa).

Hot water coil parameters:


System Parameters: Air flow = 2000 m³/h. Outside air temperature =-15°C. Water temperature (in/out) = 90/70 °C.

• Air Speed. Starting from 2000 m³/h on the air flow scale draw a vertical line ① till the air speed axis. (3.75 m/s).

Supply air temperature, prolong the line 0 up to the point where it crosses the outside air temperature (blue curve, e.g. -15°C); then draw a horizontal line 2 from this point to the left till crossing water in/out temperature curve (e.g. 90/70 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+22°C).

= Heating coil capacity. Prolong the line 🛈 up to the point where it crosses the outside air temperature (e.g. -15°C, red curve) and draw a horizontal line 🛈 from this point to the right until it crosses water Industry on a provide the second secon

Water pressure drop. Draw the line ô from the point where the line 6 crosses the black curve to the pressure drop axis. (3.8 kPa).

How to use water heater diagrams

System Parameters: Air flow = 2000 m³/h. Outside air temperature =-15°C. Water temperature (in/out) = 70/50 °C.

Air Speed Starting from 2000 m/m. Orable air temperature (m/out) = 70/30 c.
Air Speed Starting from 0 the air flow scale draw a vertical line (0 till the air speed axis which makes about 3.75 m/s.
Supply air temperature, prolong the line (0 up to the point where it crossing water temperature (blue curve, e.g. -15°C); then draw a horizontal line (2) from this point to the left till crossing water in/out temperature curve (e.g. 70/50 °C). From this point draw a vertical line ③ to the supply air temperature axis on top of the graphic (+31°C).

In/out temperature curve (e.g., 10/50°C), from this point draw a vertical line ⁽¹⁾ to the subply air temperature axis on top of the graphic (+31°C).
Heating coil capacity. Prolong the line ⁽¹⁾ up to the point where it crosses the outside air temperature (e.g., -15°C, red curve) and draw a horizontal line ⁽²⁾ from this point to the right until it crosses water in/out temperature (e.g., 70/50°C), from there draw a vertical line ⁽³⁾ up to the scale representing the heating coil capacity (35.0 kW).
Water flow. Prolong the line ⁽³⁾ down to water flow axis at the bottom of the graphic ⁽⁶⁾ (0.431/s).
Water pressure drop. Draw the line ⁽²⁾ from the point where the line ⁽⁵⁾ crosses the black curve to the pressure drop axis. (9.0 kPa).

AIR HANDLING UNIT WITH HEAT RECOVERY SERIES